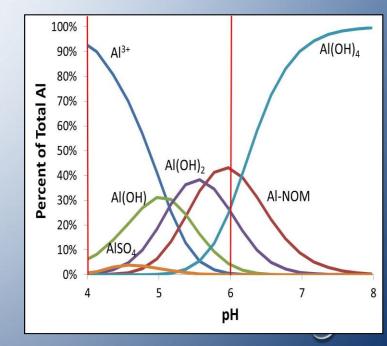

MEASURING BIOAVAILABLE ALUMINUM IN NATURAL WATER SAMPLES

William Adams¹, Patricio Rodriguez², William Stubblefield³, Allison Cardwell³ and Eirik Nordheim⁴

- 1- Red Cap Consulting, Lake Point, UT
- 2- Phr Consulting, Santiago, Chile
- 3-Oregon State University, Corvallis, OR
- 4- European Aluminium, Brussels, Belgium


<u>Adamsw10546@gmail.com</u> 801-558-0222

WHAT'S THE ISSUE?

- Natural waters contain suspended solids high in Al
- Effluent permits require measurement of total recoverable aluminum
- Non-compliance can result due to TSS

What we want to measure is the free / labile Al:

AI⁺⁺⁺, AI(OH)²⁺, AI(OH)₂⁺, AI(OH)₄⁻¹

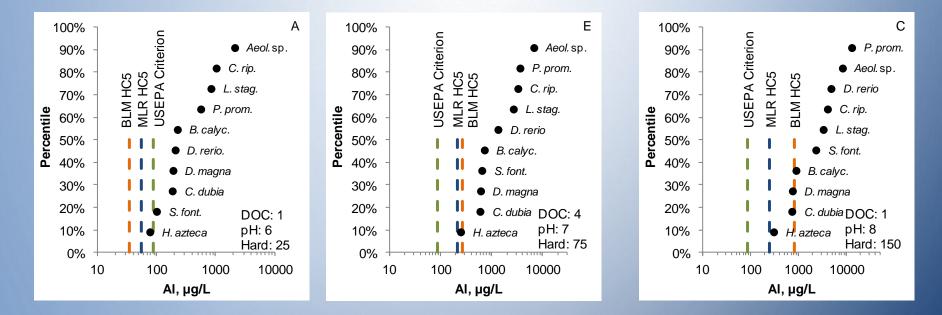
Example: Al Speciation diagram as a function of pH

\bigcirc

USEPA Water Quality Criteria for Aluminum

EPA Water Quality Criteria for Aluminum

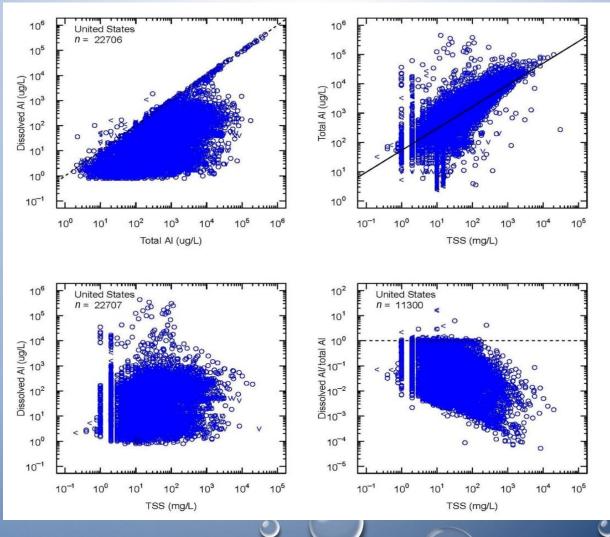
1988	µg/L	2018		
Acute	750	1 - 4,800		
Chronic	87	0.63 - 3,200		


USEPA 2018 Water Quality Criteria are now based on a Multiple Linear Regression Model

DeForest et al 2018. Environmental Toxicology and Chemistry—37 (1): 80–90 See special section in January issue of ETC on aluminum

USEPA Water Quality Criteria for Aluminum

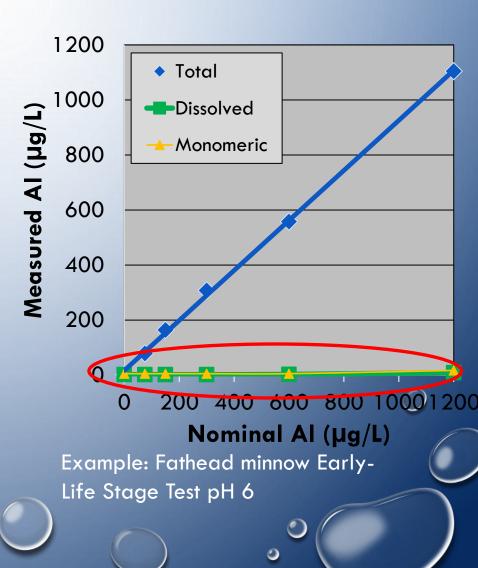
- Multiple Linear Regression Model (MLR)
- MLR model runs on an excel spreadsheet and requires only three input parameters
- Predicts toxicity as a function of pH, hardness (Ca:Mg) and dissolved organic carbon
- Model is used to estimate a site-specific water quality standard
- Biotic Ligand Model (BLM) has also been developed.
 - A mechanistic approach binding to a key receptor


Species Sensitivity Distributions for Aluminum Influenced by Water Chemistry

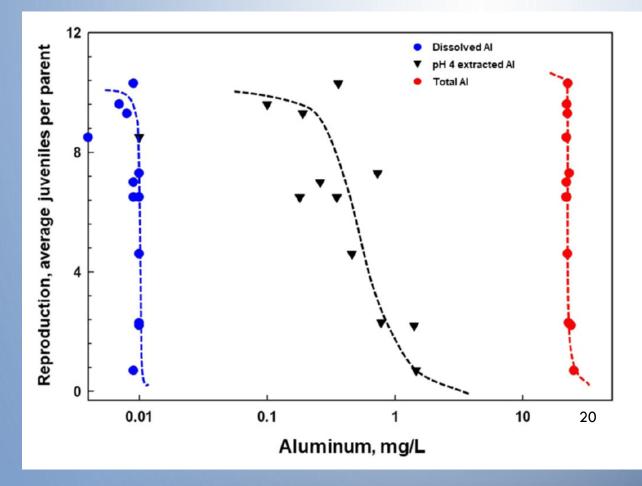
Sensitivity distributions for aluminum based on genus mean EC20s for different water chemistries – corrected for bioavailability using BLM and MLR models.

Santore et al. 2018. Biotic Ligand Model ET&C 37: 80-90 DeForest et al. 2018. Multiple Linear Model ET&C 37:70-79

Al in Natural Water Samples as a Function of TSS



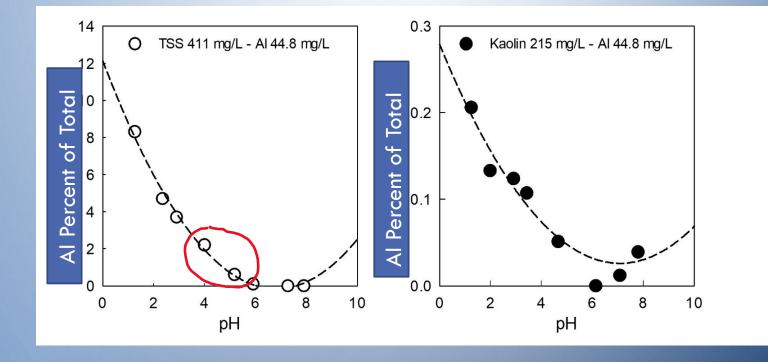
٢


 \bigcirc

RESULTS

- Total AI correlates well with nominal exposure concentrations
- Dissolved and monomeric Al are low across all test concentrations
 - due to precipitation

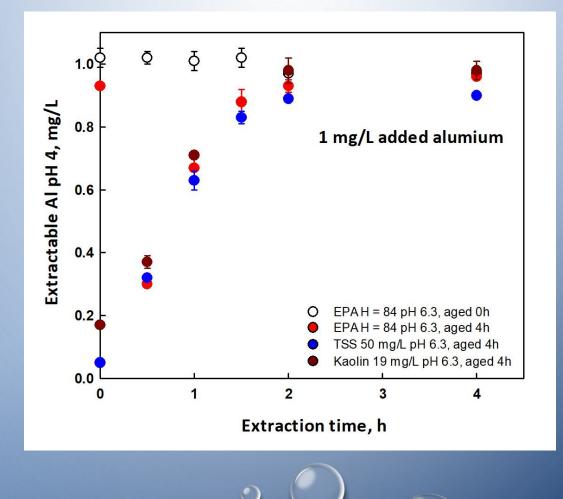
Toxicity of AI in Natural Water Samples With TSS



TSS = 200 mg/L Total Al = 22 mg/L Toxicity at 0.1-1 mg/L

0

Al Dissolution as a Function of pH from Waters High in TSS


- Total AI in both Figures was 45 mg/L
- 1 Hour Incubation

0

0

- Al Recovery Water Samples With 5 mg Al/L from TSS
- 1 mg/L added as dissolved AI Aged 0 and 4 Hours
- Extracted at pH 4 Method measures only the added AI

Al in Natural Water Samples as a Function of TSS

Al concentrations in water samples as measured by various methods and degree of pH of extraction procedure.

	Measured Concentration (µg/L Al)					
River	Total			рН 4		
	Recoverable	Total	Acid-Soluble	extracted	Dissolved	
			pH 1.65-			
	pH <1.0	pH <2.0	1.85	pH 4.0	NA ¹	
	Average	Average	Average	Average	Average	TSS
Zollner						
Creek	6700	3134	775	146	8.5	136
Luckiamute						
River	3970	2428	725	38.1	34.9	89.2
Ohio River	3165	2724	410	71	0.9	140
Bear River	2370	966	309	43.9	1.4	290
N. Santiam						
River	1690	882	396	30	20.5	36.6
1 Sample is filtered and then pH adjusted to <2.0.						

SUMMARY

- AI toxicity correlates with total metal..... And pH4 extraction
- Laboratory toxicity test waters do not contain TSS.
- Total AI and pH4 AI give the same analytical result in waters with no TSS.
- A method is needed to measure Al in natural waters without dissolving the suspended solids; i.e., pH 4 extraction.
- A balance has to be struck in the degree of aggressiveness of the extraction procedure.
- EPA Office of Water and several States have acknowledged the need for the method.

NEXT STEPS

- Development of an ASTM standard method
 - Draft document prepared first vote taken
- Interlaboratory comparison in progress

0

Bear River, Utah, USA